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Abstract

The Utility Value of Longevity Risk Pooling: Analytic Insights

The consensus among scholars is that (some) longevity risk pooling is the optimal strat-

egy for drawing down wealth in retirement and a robust literature has developed around its

measurement via annuity equivalent wealth. However, most of the published work is con-

ducted numerically and authors usually report only a handful of limited values. In this paper

we derive some closed-form expressions for the value of longevity risk pooling with fixed life

annuities under constant relative risk aversion preferences. We show, for example, that this

value converges to
√
e − 1 ≈ 65%, when the interest rate is the inverse of life expectancy,

lifetimes are exponentially distributed and utility is logarithmic. In general the various for-

mulae we derive match previously published numerical results, when properly calibrated to

discrete time and tables. More importantly, we focus attention on the incremental utility

from annuitization when the retiree is already endowed with pre-existing pension income

such as Social Security benefits. Indeed, due to the difficulty in working with the so-called

wealth depletion time in lifecycle models, we believe this is an area that hasn’t received

proper attention from actuarial researchers. Our paper offers tools to explain the value of

longevity risk pooling.



1 Motivation and Outline

Researchers and scholars have long known – since the original work by Yaari (1965) – that

longevity risk pooling in the form of life annuities (a.k.a. actuarial notes, or instantaneous

tontines) is the optimal strategy for drawing down wealth in retirement. In an idealized

(utopian) world with no market imperfections, fair insurance pricing and zero bequest mo-

tives, the optimal allocation to annuities (anytime, anywhere) is 100%. Even when loadings,

imperfections and bequest motives are added to the basic model, the work by Davidoff et al.

(2005) argues for a substantial allocation to life annuities.

A large and very robust literature has developed around the measurement of so-called

annuity equivalent wealth (AEW), a metric used in a variety of widely cited-papers starting

with Kotlikoff and Spivak (1981) and continued by Brown (2001). However, most of the

AEW-based research is conducted numerically and authors usually report only a handful of

limited values in their papers – for understandable reasons, we might add. Nevertheless a

diligent reader is hard pressed to solve or replicate their own stochastic dynamic program

if they seek personalized numbers. This is becoming increasingly important in a scholarly

environment which places (greater) value on replicability and transparency. In addition to

the academic need, industry practitioners have also struggled to explain the value of longevity

risk pooling to a wider public.

Motivated by the need for computational simplicity in this paper we derive a variety of

analytic expressions for the AEW under constant relative risk aversion (CRRA) consumption

preferences. We provide a complete characterization under exponential mortality as well as

results for more general models of mortality, such as Gompertz-Makeham (GM). And, since

any mortality table relevant to retirees can be calibrated to the GM law with little economic

error, our expressions can also be used to estimate the value of pooling in any environment,

which should be of practical use to actuaries.

We note up front that the output from our analytic expressions roughly match previously

published numbers which were based on discrete time and tables, so there are no surprises,

conflicts or inconsistencies with the prior annuity economics literature. Rather, our peda-

gogical simplification enables users to calculate and report the utility value of longevity risk

pooling under different mortality assumptions, retirement ages, discount rates and levels of

risk aversion.

From a risk theory or conceptual point of view, our work highlights the often small incre-

mental utility that comes from annuitization when the individual is already endowed with

(substantial) pre-existing pension income in the form of Social Security benefits or income

from a Defined Benefit (DB) pension plan. Methodologically, we compute the annuity equiv-

alent wealth without having to resort to discounting the present value of pension benefits,

adding them to wealth or ignoring them altogether; which is often the case in the economics

literature.

The benefit of additional longevity risk pooling – and the proper computation of the

AEW with background pension income – is an item that hasn’t received as much attention

from actuarial researchers and annuity scholars. For example, the book by Sheshinski (2007)
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makes no reference to this matter, mainly because he is concerned with the optimal strategy

and annuity valuation in the absence of pre-existing pensions. The more financially oriented

lifecycle and portfolio choice literature, such as Cocco and Gomes (2012) for example, aren’t

concerned with computing AEW. They focus on explaining observed behavior, so these issues

aren’t addressed explicitly either.

1.1 Plan and Agenda

The remainder of this paper is organized as follows. In the next section (#2) we review

the conceptual framework, formally define the annuity equivalent wealth and explain its

relation to the value of longevity risk pooling, a term which is more familiar to actuaries

and insurance specialists. In section (#3) we restrict our attention to the case in which

the remaining lifetime random variable is exponentially distributed, which means that the

mortality hazard rate is constant. Although this is a (very) unrealistic assumption (especially

to actuaries), it is used in many insurance economic papers. In the same section (#3) we

offer a range of numerical results or case studies in the presence of pre-existing pension

income. Section (#4) moves on to the more general mortality models. We obtain a closed-

form expression for the value of pooling in the absence of pre-existing pension income as

a function of the ratio of two annuity factors. If the annuity factors themselves can be

expressed analytically, then so can the value of longevity risk pooling. Our expressions and

results are compared with the (numerical) values presented in Brown et al. (2001), and are

in fact consistent with their results in the absence of pre-existing pension income.

One of the main theoretical contributions in this paper is to argue that when pre-existing

(fixed) pensions are included in a lifecycle model one has to be (very) careful about how

to define annuity equivalent wealth and the value of longevity risk pooling. This is due to

the wealth depletion time which complicates the discounted utility analysis. Although the

concept of a wealth depletion time is explained in Leung (2002, 2007) or in Lachance (2012),

within the context of the Yaari (1965) lifecycle model, it doesn’t appear to be well known1.

We will explain the implication of this to the utility valuation of AEW. Finally, section

(#5) concludes the paper with a summary of the main results and expressions. Note that

stand-alone code (R script) with an algorithm that can be used to generate numerical results

under a variety of assumptions are in a technical appendix to the article.

2 Annuity Equivalent Wealth: Derived

2.1 Notation and Terminology

Let the pair (w, π) denote an initial retirement endowment of liquid (non annuitized) wealth

w, plus pension income denoted by π, which measures an annual cash-flow in real terms

1For example, Leung (2002) writes that: “Previous studies utilizing Yaari’s (1965) model of uncertain

lifetime...have failed to recognize that terminal wealth depletion is an intrinsic and important property of the

model...erroneous and misleading results will be obtained if it is ignored in the investigation”, pg. 582
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beginning immediately (t = 0) and continuing until death. The non-pensionized wealth w,

is assumed to be invested and growing at a real risk-free rate denoted by r. That account

will be the source of all consumption above and beyond what is flowing from the pension

income π. The economic value of the total endowment is: w+PV (π), where PV (π) denotes

the actuarial present value of pre-existing pension annuity income using the appropriate

mortality basis. We occasionally use the variable ψ = PV (π)/(w + PV (π)), which denotes

the fraction of the personal balance sheet that is pensionized. And, while it is clear to pension

economists that ceteris paribus it is better to have a value of ψ as close to one as possible,

the question of how to optimize consumption given an initial endowment (w, π) affects the

utility value of additional annuitization.

Later we formally define maximized discounted lifetime utility for the given pair (w, π)

but at this juncture we introduce and denote it by U∗(w, π). We add the x subscript to

U∗

x(w, π) if and when we need to draw attention to the individual’s current age x. Remember

that in the background of U∗(w, π) resides an optimal consumption strategy denoted by c∗t ,

beginning at time t = 0 until death, which dictates how w, is spent over time. There are

as many possible values of utility U(w, π) as there are strategies ct, but there is only one

unique U∗(w, π) and corresponding strategy c∗t .

Our notation for a liquid wealth plus pension income endowment pair (w, π) is used by

Cannon and Tonks (2008) for example, and implicitly in Brown (2001) as well as other papers

that measure utility value of annuities. Just to clarify notation though, U65(100, 3) without

the asterisk could represent one possible utility value at the age of x = 65, of someone who

starts retirement with an initial wealth of w = 100 dollars plus a pension entitlement of

π = 3 dollars who withdraws 4% of her initial investable wealth, that is ct = 4+3 = 7, t ≥ 0,

dollars each year until death (or the money runs out). It’s a feasible consumption strategy

but not the optimal one.

We now move on to voluntary annuitization. The individual can convert (some or all)

of his/her initial wealth w into additional pension income by purchasing annuities at a unit

price ax. The actuarial present value of the pre-existing pension income is PV (π) = axπ

and ψ = axπ/(w + axπ). Likewise, spending ax units at age x, will entitle the retiree to

one additional $1 of income. We make an assumption that pre-existing pension income π

and voluntary annuity purchases are priced and valued the same. They are substitutes,

notwithstanding frictions encountered in replacing w with more pension income.2

If one think’s of ax as the frictionless pension annuity factor and (1 + κ)ax as the loaded

annuity factor relevant to additional annuity purchases, then most of what we do in this

paper assumes κ = 0. Practically speaking, for every $1 of liquid investable wealth (w) that

is annuitized, leaving (w − 1) to invest at r, pension income will increase by 1/(1 + κ)ax.

Of course an individual endowed with (w, π) can convert his/her entire holdings into (0, π+

w/(1 + κ)ax) if they so choose, but we do not allow transfer in the other direction; that is

to unwind or sell back pension annuities. In other words, they can’t convert the pair (w, π)

into (w + π(1 + κ)ax, 0). But nor would they want to, as Menachem Yaari argued over 50

years ago in Yaari (1965), assuming κ = 0. Again, for most of what follows, κ = 0.

2See Bodie (1990) or Blake (1999) for more on pensions as “cheap” longevity insurance.
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2.2 Definition and Distinction

We now get to the crux of the matter and define the so-called annuity equivalent wealth

(AEW). Even though we haven’t yet written down a formal expression for discounted life-

time utility – the value function in the language of dynamic programming – or proven the

optimality of pooling longevity risk, our starting point is that:

U∗

x(w, π) ≤ U∗

x(w − ǫ, π + ǫ/ax), (1)

which can be proven under general utility preferences, but only in frictionless markets. In-

deed, the recent work by Reichling and Smetters (2015) questions the frictionless assumption

and hence the validity of equation (1). Intuitively though, in the absence of frictions, (max-

imized) utility is greater with more (vs. less) annuities. Every ǫ that is spent on annuities

will increase maximal utility. This again is the essence of the Yaari (1965) argument for

converting all wealth into annuities, since U∗(0, π + w/ax) will provide the greatest amount

of utility, assuming no loading, no fees and no anti-selection. We will return to these assump-

tions (κ = 0) in the concluding remarks. Note that in the background of equation (1), every

initial combination of (w, π) and its corresponding maximized utility U∗(w, π) will involve a

different consumption strategy c∗t , which is central to what follows later.

The formal definition of annuity equivalent wealth is the quantity ŵ that satisfies the

following equation:

U∗

x(ŵ, π) = U∗

x(0, π + w/ax), (2)

where w is the initial liquid wealth of the retiree. The markup of ŵ over w, reflects the

amount someone (with wealth w) would require in compensation to have the same utility

level as someone who annuitizes w. For example, Brown (2001) argues that consumers with

larger ŵ/w values, were actually more likely to purchase additional annuities at retirement.

In what follows we will focus on ŵ/w − 1, and refer to this as the value of longevity risk

pooling in-the-large, because it assumes the entire w is annuitized.

This paper is concerned with describing a variety of techniques and algorithms for iso-

lating the value of δ that satisfies the equation:

U∗

x((1 + δ)w, π) = U∗

x(0, π + w/ax), (3)

We use the phrase value of pooling in the large, because it assumes the consumer convert

all of their wealth w into more annuity income. We will later contrast this quantity δ with

a parallel metric in the small which measures the incremental value of converting only $1

into additional annuity income. And, while the CRRA assumption might tempt readers

into believing that the value of pooling for one incremental dollar is the same as the value

of pooling for the entire w, the fact is the homogeneity breaks down due to the wealth

depletion time. Also, we operate in the classical utility framework and will not veer into a

discussion of behavioral economics as it relates to the framing of annuities – investment vs.

consumption – or the reasons for the so-called annuity puzzle. Rather, we carry the torch of

Daniel Bernoulli and refer readers to Brown et al. (2008) for that aspect of annuity demand.
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The value of pooling δ = ŵ/w− 1 will depend on a large number of explicit and implicit

variables that are buried in the utility calculations, such as risk aversion and subjective

discount rates, the specific mortality table being used (subjectively or objectively) and the

interest rate used for pricing the annuity factor ax. If we wanted to clutter-up the δ, we

would add all those parameters as explicit arguments. But, that dependence is well known

to researchers. What is less known (or at least emphasized) is that the value of pooling δ

also depends on the amount of pre-existing pension income π in the initial endowment pair.

Of course, authors such as Brown (2001) make it very clear that the fraction of total

wealth that is pre-annuitized (we used the symbol ψ to denote this) will impact the AEW

and that it’s lower for individuals with pre-existing pension income. Nevertheless, it is

often obscured within the dynamic programing calculations and rarely treated as a separate

component or argument in the AEW value. The exact mechanism by which π reduces the

AEW is, for the most part, glossed over.

For example, it is incorrect to capitalize or compute the actuarial present value of the

annuity income π, add this to initial wealth w and then use the aggregate (new) number w+

PV (π) to compute AEW values. It will overstate the AEW. Methodologically, it is equally

erroneous to ignore the pre-existing pension income π and compute the AEW for the w alone,

under the misguided assumption that utility is CRRA and hence everything scales. On a

more subtle level, adding preexisting annuity income into the felicity function’s consumption

argument – and effectively moving from a CRRA formulation into a HARA world – also

ignores the issue by forcing a non-zero discretionary consumption at the boundary. Stated

formally:

U∗

x((1 + δ)w, π) 6= U∗

x((1 + δ)w + πax, 0)

U∗

x((1 + δ)w, π) 6= U∗

x((w + πax)(1 + δ), 0) (4)

The pre-existing pension income π alters the optimal consumption path c∗t in a very

critical way that feeds back into utility. And, since this is a large part of our story, we will

occasionally use the subscript δψ to remind readers that the AEW (also) depends on the

fraction of wealth that is pre-annuitized.

Ceteris paribus, we know that: δ(ψ+ǫ) − δψ > 0. In the frictionless Yaari (1965) setting

it is always worth paying for a little bit more of annuity income. The issue and impetus for

this paper is to arrive at an expression for δψ so that this marginal or incremental benefit

can be properly measured quickly, easily and under a wide variety of parameters. By its

very definition in equation (3), the value δψ assumes the entire w wealth is used to purchase

(more) annuities. But what is the incremental value of longevity pooling?

2.3 Pooling in the small

In the presence of pre-existing pension income π – whether it be Social Security benefits

or voluntarily purchased annuity income – we are forced to refine the meaning of annuity

equivalent wealth and the corresponding value of longevity risk pooling.
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Indeed, when the consumer or retiree is (only) endowed with liquid investable assets

(w > 0, π = 0), and assuming they exhibit constant relative risk aversion utility preferences,

the δ0 value scales in wealth. The value of ŵ for someone with w = $1 (divided by w) is

identical to the AEW of a wealthier retiree with an initially endowed w = $1 million (divided

by w.) In fact, this is precisely why virtually all of the authors in the annuity economics

literature express and report AEW numbers relative to a dollar value. Authors arbitrarily

assume an initial wealth of w = $1, because it makes no difference to δ. The classical value of

longevity risk pooling doesn’t depend on the actual value of w, assuming consumers (i.) obey

CRRA utility preferences, (ii.) have no exogenous pension income, (iii.) have no bequest

motives, and (iv.) are in frictionless markets.

However, once an exogenous or pre-existing pension income is properly introduced into

the life-cycle consumer optimization problem, the value of w as it relates to π, actually

matters. This is not usually the case with the convenient homogenous specification of utility

and might be one of the reasons it has been overlooked in the literature. Ignoring this fact

will overstate the AEW and the value of pooling because δ0 > δψ, for any value of ψ > 0, that

is when the individual already has pre-existing pension annuity income. The value of δ0.99,

which represents someone for whom the majority of wealth is already pensionized, should

intuitively be quite small.

We therefore define an additional metric for the value of longevity risk pooling, denoted

by v which captures the value for one incremental dollar of wealth. In some sense, it’s back

to a marginal analysis. Technically, the AEW in-the-small addresses the following: Assume

a retiree has w = $100, 000 in investable retirement assets and π = $10, 000 in pre-existing

pension income which induces lifetime utility denoted by: U∗

x(w, π).

Now, they are about to spend only $1 from their w = $100, 000 to purchase incremental

pension income beyond the π = $10, 000 they already are entitled to. This will obviously

leave them with only $99, 999 in investable retirement wealth plus revised pension income

of $10, 000 + 1/ax, where ax is the standard annuity factor at age x. How much additional

wealth would the retiree – who didn’t spend the additional $1 to purchase additional pension

annuity income – require to induce the same level of utility? Needless to say, the answer

will depend on the coefficient of relative risk aversion, but will actually change if the initial

wealth were w = $1, 000, 000 or only $50, 0000, or the pension π was different.

For clarity we will report and display both δ values (in-the-large) and v values (in-the-

small). We solve for v by equating levels of optimal utility, via the following equation:

U∗

x(w + v, π) = U∗

x(w − 1, π + 1/ax). (5)

We now move on to the computations.

2.4 Computing Utility

We are at the point in the narrative where we can present a formal expression for discounted

lifetime utility: U∗

x(w, π). Let u(c) denote a constant relative risk aversion (CRRA) utility
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(a.k.a. felicity) function parameterized by risk aversion γ, and a subjective discount rate ρ.

Formally, u(c) = c1−γ/(1− γ). The maximal utility is:

U∗

x(w, π) = max
ct

∫

∞

0

e−ρt (tpx) u(ct) dt, (6)

with a dynamic budget constraint determined by:

dWt = (rWt + π − ct) dt, W0 = w. (7)

The objective function (6) and constraint (7) is part of the classical lifecycle frame-

work which will soon celebrate its centenary anniversary, although recently Bommier (2006)

questioned the underlying risk neutrality assumption and proposes a different form alto-

gether. We follow Yaari (1965), Levhari and Mirman (1977), Davies (1981), Butler (2001)

or Pashchenko (2013) where this framework is used to extract testable implications for ra-

tional behavior with lifetime uncertainty and annuities. The pension income π flows into

the (one) account earning r, and then consumption ct is extracted from the same account.

By definition the optimal consumption function is c∗t and the difference: (c∗t − π) is the net

spending rate from liquid wealth, whereas (c∗t − π)/Wt is the spending rate as a fraction of

current wealth. Indeed, saving might continue into retirement and wealth might continue to

grow temporarily, for someone with a sufficiently low discount rate ρ. We will not allow any

borrowing (against future pension income) so that wealth Wt ≥ 0 at all times.

Also, to be consistent with the literature we assume for most of what follows that ρ = r

and the subjective discount rate is equal to the interest rate earned in the account. The only

reason to prefer early vs. late consumption, in our model, is due to mortality beliefs and the

inter-temporal elasticity of substitution, 1/γ in our model.

Moving on, without any loss of generality we can decompose or break-up the integral in

equation (6) into two arbitrary parts as follows:

U∗

x(w, π) = max
ct

[
∫ τ

0

e−rt (tpx) u(ct)dt +

∫

∞

τ

e−rt (tpx) u(ct)dt

]

, (8)

where the break takes place at time τ . It might seem odd to split up the objective function

in this manner, but in fact when π > 0, there is a qualitative change in optimal consumption

at some point during the horizon t ∈ [0,∞). That is, liquid wealth is actually depleted and

the optimal consumption rate c∗t = π from that point onward. That is the τ value we select.

Until that wealth depletion time consumption is sourced from from both pension income and

wealth. But after t ≥ τ consumption is exactly equal to the pension, the individual has run

out of liquid (non-annuitized) funds and Wt = 0, for t ≥ τ .

To be crystal clear we are not imposing this on the problem. It actually is the optimal

policy, as elaborated on by Leung (2002, 2007) and carefully explained in the (textbook) by

Charupat, et al. (2012), chapter #13. We can’t emphasize enough how critical this (seem-

ingly minor) point is to the calibration of lifecycle models in general and the computation

of AEW values in particular. At the risk of flogging a dead horse, if one assumes all pen-

sion income is capitalized and discounted to time zero, or if the pension income is added to
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optimal consumption as a scaling afterthought, the wealth depletion time will be lost in the

backward induction algorithm.

Technically, the value of c∗t = π for t ≥ τ and therefore u(c∗t ) from the point of t = τ

onward is constant. This enables us to take the next step and express the objective function

(yet again) and optimal utility as:

U∗

x(w, π) = max
τ, ct

[
∫ τ

0

e−rt (tpx) u(ct)dt

]

+ u(π) ax(τ), (9)

where ax(τ) is the (deferred) annuity factor at age x, but beginning or starting income at

time τ . It is sometimes called an advanced life delayed annuity (ALDA). As far as notation

is concerned, when the deferral period is τ = 0, we will resort to the simpler expression ax
instead of the cumbersome ax(0). More importantly, when w = 0 this all collapses to:

U∗

x(0, π) = u(π) ax, (10)

If the consumer has no investable funds (w = 0) and they are living-off pension π income

only, then discounted (optimal) lifetime utility is simply: u(π) ax. See Cannon and Tonks

(2008) for a derivation of equation (10), even under more general (Epstein Zin) preferences.

When all wealth w > 0 is converted to annuities, utility is: u(w/ax + π)ax.

Finally, the optimal consumption before the wealth depletion time τ , when consumption

is not equal to the pension π, is:

c∗t = c∗0(tpx)
1/γ =

(

π

(τpx)1/γ

)

(tpx)
1/γ, when π > 0 (11)

where the optimal initial consumption rate c∗0 is related to (terminal) consumption π, via

the relationship c∗0 = π/(τpx)
1/γ, as long as there actually is some pension income π > 0. In

contrast to equation (11), when π = 0, the relevant consumption rate must be sufficient to

last forever (in theory), so that w = c∗0
∫

∞

0
e−rt(tpx)

1/γdt, which leads to the corresponding:

c∗t =

(

w
∫

∞

0
e−rt(tpx)1/γdt

)

(tpx)
1/γ, when π = 0. (12)

We simply note that the integral in the denominator of equation (12) is an annuity factor

(of sorts) assuming that the survival probability (tpx) is shifted or distorted by 1/γ. For

example, when γ = 1 and utility is logarithmic, the optimal consumption function c∗t in

equation (12) collapses to the hypothetical annuity consumption w/ax times the survival

probability (tpx), which is clearly less than what a true annuity would have provided. The

individual who converts all liquid wealth w into the annuity would consume c∗t = w/ax for

ever, but the non-annuitizer must continue to reduce consumption in proportion to their

survival probability as a precautionary measure. Although it might seem as if equation (11)

or equation (12) is plucked-out of thin air, neither of these are new or novel. See Cannon and

Tonks (2008) or Charupat, et al. (2012), chapter #13 for example. Rather, our objective

here is to use these analytic expressions to solve for and extract δ, which has not been done

previously in the literature.
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2.5 Solving for δ when π = 0.

Using the prior notation, let U∗

x(w, 0) denote discounted lifetime utility of wealth w without

annuities. This can be expressed mathematically as:

U∗

x(w, 0) =

∫

∞

0

e−rt (tpx) u(c
∗

t ) dt, (13)

where c∗t is the optimized consumption path we displayed in equation (12). Note that there

is no wealth depletion time since there are no annuities. In contrast let U∗

x(0, w/ax) denote

discounted lifetime utility of wealth, assuming wealth w is entirely annuitized or pooled at

age x. Discounted utility is:

U∗

x(0, w/ax) =

∫

∞

0

e−rt (tpx) u(w/ax) dt, (14)

where the optimized consumption path is trivially c∗t = w/ax, for all t. Technically τ = 0

because all wealth has been annuitized at time zero.

We won’t belabor the point that U∗

x(0, w/ax) ≥ U∗

x(w, 0) but simply conclude by noting

that δ0 (assuming pension income π = 0 so that the ψ = 0) will satisfy the following equation:

U∗

x((1 + δ0)w, 0) = U∗

x(0, w/ax), (15)

and the rest is algebra. Basically, we compute the inverse function y = U
(∗,−1)
x (z, π) for

z = U∗

x(y, π) with respect to the wealth variable w. The quantity we are looking for is:

δ0 =
1

w
U (∗,−1)(U∗

x(0, w/ax), 0) − 1, (16)

and more generally, in the presence of pension income π > 0, so that the fraction of balance

sheet pre-annuitized is: ψ = axπ/(w + axπ) > 0, the expression generalizes to:

δψ =
1

w
U (∗,−1)(U∗

x(0, w/ax + π), 0) − 1, (17)

where the (inverse) value function in the denominator of equation (17) includes and requires

the calculation of the wealth depletion time τ . Both of these, δ0 and δψ for ψ > 0 are

concerned with complete annuitization, or what we called AEW in-the-large. If we focus on

the incremental dollar of annuitization, the relevant expression becomes:

v = U (∗,−1)(U∗

x(w − 1, 1/ax + π), π) − w, (18)

where v is (what we call) the value in-the-small. The remainder of this paper makes specific

assumptions on the underlying mortality function (tpx), pre-existing pension income π, and

then inverts the value functions to obtain expressions for equations (16) - (18).
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3 Exponential Remaining Lifetime

3.1 Start with the Corners

If the entire w is annuitized at time zero, the optimal consumption rate is: c∗t = (w/ax+ π),

which in the case of an exponentially distributed lifetime collapses to: c∗t = w(r + λ) + π,

because the annuity factor is: ax = 1/(r + λ). The maximal utility possible when the entire

endowment (w, π) is annuitized, according to equation (14), is:

U∗

λ(0, w/ax) =

∫

∞

0

e−rt(e−λt)
(w(r + λ))1−γ

1− γ
dt =

(w(r + λ))1−γ

(1− γ)(r + λ)
, (19)

where the subscript λ in the Uλ reminds readers we are operating under an exponential

remaining lifetime in which the (only) parameter that matters is the hazard rate λ. The

first item in the integrand captures the subjective discounting of utility, the second is the

survival probability and the third is the instantaneous utility, which is constant (because

consumption equals the annuity).

Equation (19) represents the gold standard by which all other strategies will be measured.

It represents the highest possible level of utility, assuming the retiree converts the entire w to

additional annuity units. At the other extreme of equation (19) is the (obstinate) individual

who refuses to annuitize any wealth at all, and finances all consumption from liquid wealth.

For this individual the maximal achievable level of utility can be simplified to:

U∗

λ(w, 0) =

∫

∞

0

e−(r+λ)t (c
∗

t )
1−γ

1− γ
dt =

(w(r + λ/γ))1−γ

(1− γ)(r + λ/γ)
. (20)

Note from equation (12) that (tpx)
1/γ = e−(λ/γ)t and the optimal consumption function

c∗t = w(r + λ/γ)e−(λ/γ)t. By comparing equation (19) to equation (20) and the concavity of

the power function, one can see explicitly that as long as the mortality rate λ > 0, the utility

from annuitization U∗

λ(0, w/ax) is greater than the utility from self-annuitization U∗

λ(w, 0),

or any other systematic withdrawal or drawdown plan.

Equating the utility from equation (19) to the utility in equation (20), the value of

longevity pooling δ0 (in-the-large), when the individual has no pre-existing annuity income,

will solve the following equation:

((1 + δ0)(r + λ/γ))1−γ

r + λ/γ
=

(r + λ)1−γ

r + λ
, (21)

which after logarithms, cancelations and simplifications leads to one of our main (closed-

form) expressions:

δ0 =

(

r + λ/γ

r + λ

)γ/(1−γ)

− 1, when λ > 0, π = 0 (22)

under any combination of r, λ, γ assuming γ 6= 1; otherwise one has to take limits as γ → 1.
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To be clear, equation (22) only applies to the case in which the future remaining lifetime

is assumed to be exponentially distributed with expected remaining lifetime 1/λ, and in

addition there is no pre-existing pension income, so that π = 0. Nevetheless, the structure

of equation (22), will continue to make an appearance in all our expressions for the value

of longevity risk pooling. It will have the same (ratio) format, regardless of the specific

(continuous or discrete) law of mortality.

The value of longevity risk pooling in equation (22) increases in the mortality rate λ (and

declines in the remaining life expectancy), but declines in the interest rate r. This charac-

teristic of δ generalizes to non-decreasing laws of mortality, such as Gompertz-Makeham. As

far as exponentially mortality is concerned, the derivative of δ0 can be written as:

∂δ0
∂r

=
γ

1− γ

(

λ(1− 1/γ)

(r + λ)2

)γ/(1−γ)−1

, (23)

which is negative for γ > 1. Indeed, when interest rates are relatively lower (i.e. r = 2% vs.

r = 4%) the value of longevity pooling is greater to the consumer. And, the older you are

(i.e. larger λ) the more you benefit from pooling. All this according to equation (23).

Note also that when the mortality rate λ happens to be such that rγ = λ, and the ratio

of interest rates to mortality rates happens to equal the coefficient of relative risk aversion,

the value of longevity pooling reported in equation (22), can be pushed further to yield:

δ0 =

(

2

1 + γ

)γ/(1−γ)

− 1, when λ = rγ, π = 0. (24)

This (oddly enough) does not depend on λ or the interest rate r. For example, when γ = 2

the value of longevity risk pooling is then δ0 = 125% in equation (24), which means that

the AEW is $2.25 per initial $1 of wealth in the absence of any pre-existing pension income.

And, when γ = 1.25 the value of longevity risk pooling is δ = 80% in equation (24), both in

the simplified case in which λ/r = γ. For comparison purposes, Kotlikoff and Spivak (1981)

on page #378, report values for γ = 1.25 which in their case are: δ0 = 97% for males and

δ0 = 85% for females at the age of 75, assuming ρ = r = 1%. So these numbers – under

exponential remaining lifetime assumptions – aren’t very far from numbers based on more

realistic mortality tables.

Interestingly, if we compute the limit of (2/(1 + γ))γ/(1−γ) − 1 as γ goes to 1 and the

utility function converges to logarithmic, the value of longevity risk pooling in equation (24),

converges to:

δ0 =
√
e− 1 ≈ 64.9%, when r = λ, γ → 1, (25)

which just to be clear, assumes that the mortality rate λ = r. Perhaps this is a stretch, but

an interesting expression nevertheless which provides an actuarial economic interpretation

to
√
e.

Now, these simple expressions are nice and helpful at the extremes of all-or-nothing

annuities, but what is the value of longevity pooling δψ when the individual has pre-existing

pension income? We now move on to maximal utility for the generalized endowment (w, π),

11



to obtain an expression that can be compared against equation (22). Obviously it won’t be

as clean and will also involve initial w as well as pension income π. More importantly, the

value of δψ for ψ > 0 will not be as large as δ0, even when the discounted economic value of

the initial endowments (w, π) are identical.

3.2 Wealth Depletion Time

The first order of business is to derive the wealth depletion time (WDT) denoted by τ , which

is instrumental and a key milestone for computing the maximal utility value U∗(w, π). We

start with the basic budget constraint which dictates that:

w =

∫ τ

0

(c∗t − π)e−rtdt = π

∫ τ

0

(

e−λt/γ

e−λτ/γ
− 1

)

e−rtdt. (26)

Note that the transition from the c∗t to the expression in the second integrand comes directly

from equation (11) and the boundary condition (at the WDT) which states: c∗τ = π.

We are solving for τ in the above equation, which after a bit of calculus leads to:

(

r

r + λ/γ

)

e
λ
γ
τ +

(

λ/γ

r + λ/γ

)

e−rτ =
rw

π
+ 1, (27)

where the variable τ , appears in two different exponents and is difficult to extract in closed

form. It can however be solved iteratively starting with τ = 0 and incrementing until reaching

the value of the right-hand side. For example, when w = 100, π = 10, r = 0.03, γ = 2 and the

mortality rate λ = 1/20, the τ = 28.24 years. But, if the pension is doubled to π = 20 units,

the WDT drops to τ = 20.08 years. Note that for positive values of γ, λ, r, the left-hand

side of the above equation is monotonically increasing in τ ≥ 0, which lends itself nicely to

numerical methods for locating the unique value of τ for which the left-hand side is equal to
rw
π
. When τ = 0, the value of the left-hand side is 1 and zero can only be a wealth depletion

time if-and-only-if w = 0, whenever π > 0.

Finally, recall that ψ = w/(w + axπ), which in the case of exponential mortality, ax =

(r + λ)−1, implies that equation (27) can also be written as:

(

r

r + λ/γ

)

e
λ
γ
τ +

(

λ/γ

r + λ/γ

)

e−rτ =
r/ψ + λ

r + λ
.

This equation in τ collapses to: re−λτ + λe−rτ = r/ψ + λ, when γ = 1.

3.3 Special Case Again: λ/γ = r

When the mortality rate λ = γr, the left hand side of equation (27) collapses to: 1
2
(erτ + e−rτ ) =

cosh(rτ), which is a trigonometric function, the wealth depletion time (WDT) under expo-
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nential mortality is:

τ =
1

r
ln

[

rw

π
+ 1 +

√

(rw

π
+ 1

)2

− 1

]

, when λ/γ = r.

=
1

r
ln





r/ψ + λ

r + λ
+

√

(

r/ψ + λ

r + λ

)2

− 1



 . (28)

The WDT τ doesn’t depend on risk aversion γ or the mortality rate λ, as long as λ/γ = r.

For example, with π = 3, w = 60 and r = 2.5%, the value of rw/π + 1 = 1.5, which results

in τ = ln(1.5 +
√
1.25))/0.025 = 38.5 years. If indeed the individual reaches this age he/she

would exhaust all wealth and live-off the $3 of pension. The consumption rate up to WDT

is: ct = (3/(e(0.025)(38.5))0.025t, according to equation (11), which is equal to: c∗t = 3, when

τ = 38.5.

Now that we have the wealth depletion time τ , either explicitly from equation (28), or

implicitly from equation (27), as well as the optimal consumption function c∗t , we move-on

to compute maximal utility.

3.4 Maximal Utility

Recall that when the mortality rate λ is constant, the immediate annuity factor can be

expressed as ax = 1/(r+λ) and the deferred annuity factor is ax(τ) = e−(r+λ)τ/(r+λ). The

maximal value of utility, going back to the original formulation in equation (9), is:

U∗

λ(w, π) =
π1−γ

1− γ

[

∫ τ

0

e−(r+λ)t

(

e−λt/γ

e−λτ/γ

)1−γ

dt+
e−(r+λ)τ

r + λ

]

, (29)

where the optimal consumption function comes from equation (11). Note that τ appears

three times in the above expression, once in the upper bound of integration, then in the

denominator of the integrand and finally in the deferred annuity factor. Once again, after a

bit of calculus, equation (29) can be re-written as:

U∗

λ(w, π) =
π1−γ

1− γ

(

e2rτ − 1

2r
+

1

r + λ

) (

1

erτ

)
λ
r
+1

. (30)

The value of longevity risk pooling in-the-large or in-the-small, will be the value of δψ and v

that respectively solve:

U∗

λ(w(1 + δψ), π) = U∗

λ(0, π + w(r + λ)) (31)

and

U∗

λ(w + v, π) = U∗

λ(w − 1, π + r + λ). (32)

With all the analytics in hand, we are now ready for some numerical examples.
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3.5 Numerical Examples

Table #1 contains detailed results from two separate parametric examples. As stated in the

objective, our annuity equivalent wealth (AEW) computations do not involve any dynamic

programing algorithms, discretization or approximation schemes and can be easily replicated

or reapplied to other parameters.

Both cases (A and B) in table #1 are based on an economy in which the (risk-free)

interest rate is 2.5%, a retiree (who we call Xi) has an initial economic endowment of $100

and rational preferences that can be described using a constant relative risk aversion (CRRA)

utility function. To be very clear, the $100 captures the sum of two terms: (i.) liquid non-

annuitized investable wealth, and (ii.) pre-pensionized income. The rows in table #1 model

different combinations of pension income plus investable wealth, but all are associated with

an actuarial present value of exactly $100. The economic equivalence is important when we

illustrate or compare the utility value of pooling. The Pensionized column (#2) is then also

100ψ, using our prior definition.

Let’s start at the very top of Case A, when the retiree (Xi) has $100 in liquid wealth but

no pre-existing pension income, which is why (in the second column) the actuarial present

value of any pre-existing pension income is zero. For this initial endowment, the optimal

consumption strategy for Xi is spending 5 dollars (in the first year) and rationally reduce

consumption by r + λ/γ = 5% each year, as per the optimal consumption function and

instructions in equation (12). Xi will never exhaust or deplete the investable funds (since

5e−0.05∗t is always positive) regardless of how long Xi lives.

To our main point, let’s compare Xi to his or her utility twin (called Yi) who uses the

entire 100 dollars to voluntarily purchase the (actuarially fair, unloaded) life annuity at time

zero. By fully annuitizing, Yi’s discounted utility of lifetime consumption would be higher.

Indeed, this is the foundation of annuity (and much of pension) economics and the famous

Yaari (1965) result. Nobody can beat Yi.

Back to utility. Xi would require an additional 125% of initial wealth – that is a total

of 225 dollars – to be as well off (or happy) in utility terms as Yi who used the entire $100

to purchase a fairly priced life annuity. For the record, case A assumes a mortality rate of

5%, which implies that $100 would entitle Yi to 100(0.025+0.05) = 7.5 dollars of annuity

income for life. Yi would immediately consume more and experience more discounted utility.

A win-win situation, which isn’t observed in all cases.

For purposes of replication, the maximal utility (for Yi) if the entire $100 were annuitized

is: -1.777 utiles according to equation (19), whereas the maximal utility (for Xi) is exactly

-4.0 utiles. Stated differently, giving Xi who has $100 of investable wealth and no annuity

income an additional 125 dollars will increase discounted utility from -4 to -1.777, which is

the classic definition of annuity equivalent wealth (AEW). The compensating number can

be expressed as a percentage (125%), or on a per dollar basis (2.25). A pension actuary

would say that the value of longevity pooling is 125% of retirement wealth, and we adopt

that language.

So far there is nothing new here, although some readers might be surprised at the rel-
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Table #1

What is the Utility Value of (More) Longevity Pooling

AEW in the large: U∗

λ(w(1 + δ), π) = U∗

λ(0, π + w/ax) : Solve for δ.

AEW in the small: U∗

λ(w + v, π) = U∗

λ(w − 1, π + 1/ax) : Solve for v.

Case A: Interest Rate ρ = r = 2.5%, CRRA γ = 2.0, Mortality Rate λ = 5.0%.

Endowment ($) Pensionized ($) Depletion Consume ($) v ($) δ (%)

A1. w = 100, π = 0.0 PV (0.000) = 0.0 τ = ∞ c0 = 5.000 1.986 125.0%

A2. w = 862
3
, π = 1.0 PV (1.000) = 131

3
τ = 72.8 yrs. c0 = 6.171 1.668 114.8%

A3. w = 731
3
, π = 2.0 PV (2.000) = 262

3
τ = 50.7 yrs. c0 = 7.104 1.432 104.2%

A4. w = 60, π = 3.0 PV (3.000) = 40 τ = 38.5 yrs. c0 = 7.854 1.232 93.0%

A5. w = 462
3
, π = 4.0 PV (4.000) = 531

3
τ = 29.8 yrs. c0 = 8.437 1.049 80.9%

A6. w = 25, π = 5.625 PV (5.625) = 75 τ = 18.6 yrs. c0 = 8.974 0.743 57.7%

A7. w = 10, π = 6.750 PV (6.750) = 90 τ = 10.9 yrs. c0 = 8.854 0.468 35.7%

A8. w = 1, π = 7.425 PV (7.425) = 99 τ = 3.28 yrs. c0 = 8.060 0.110 11.0%

A9. w = 0, π = 7.500 PV (7.500) = 100 τ = 0 c0 = 7.500 N.A. N.A.

Case B: Interest Rate ρ = r = 2.5%, CRRA γ = 1.25, Mortality Rate λ = 3.125%.

Endowment ($) Pensionized ($) Depletion Consume ($) v ($) δ (%)

B1. w = 100, π = 0.0 PV (0.000) = 0.00 τ = ∞ c0 = 5.000 1.243 80.2%

B2. w = 82.23, π = 1.0 PV (1.000) = 17.77 τ = 71.3 yrs. c0 = 5.943 1.035 72.0%

B3. w = 64.45, π = 2.0 PV (2.000) = 35.55 τ = 47.9 yrs. c0 = 6.618 0.869 63.2%

B4. w = 46.67, π = 3.0 PV (3.000) = 53.33 τ = 34.2 yrs. c0 = 7.058 0.716 53.4%

B5. w = 28.89, π = 4.0 PV (4.000) = 71.11 τ = 23.7 yrs. c0 = 7.232 0.555 41.8%

B6. w = 10, π = 5.063 PV (5.063) = 90.00 τ = 12.5 yrs. c0 = 6.923 0.330 24.6%

B7. w = 1, π = 5.568 PV (5.568) = 99.00 τ = 3.79 yrs. c0 = 6.122 0.078 7.8%

B8. w = 0, π = 7.625 PV (5.625) = 100.0 τ = 0 c0 = 5.625 N.A. N.A.

Assumes the Remaining Lifetime (Tx) is Exponentially Distributed with Mortality Rate λ.

The Expected Remaining Lifetime and Standard Deviation of Lifetime (Tx) are both 1/λ years.

The value of a $1-per-year life annuity is: ax = 1/(r + λ) when (Tx) is Exponentially Distributed.
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atively high value of the AEW (or pooling), compared to results reported in Brown et al

(2001) for example. They use a similar 2.5% interest rates and obtain pooling values of

(only) 65%, when the coefficient of relative risk aversion of the representative consumer is

equal to 2.0, which is what we used here.

The main explanation for our higher AEW or pooling values is that we have assumed an

exponentially distributed remaining lifetime, with a mean value of 20 years and a standard

deviation of 20 years. We really had no choice since it is forced by the 5% mortality rate

underlying the exponential remaining lifetime. This (for example) leads to a 10% probability

of spending 45 years in retirement and living beyond age 110. This mortality assumption

does result in a much higher value for the longevity pooling, which is why our numbers are

higher than Brown et al. (2001).

Note that they used projections for the 1930s Social Security Administration cohort for

which life expectancy was 15 years at the age of retirement. In some sense, our exponential

remaining lifetime assumptions are biased in favor of higher AEW and pooling values due

to the fatter longevity tail of the exponential distribution. But our rationale in this section

was to illustrate how these values decline when pre-existing annuities are included in the

initial endowment. In the next section (#4) we will display AEW numbers and the value

of pooling for more realistic mortality assumptions. There, we aren’t as fortunate to have

analytic expressions for all quantities of interest, but the numbers (better) match those in

Brown et al. (2001). See the technical appendix for R-script code that generates these

values.

Moving on, the second to last column in table #1 displays the results of the annuity

equivalent wealth (AEW) in-the-small. The number is intended to answer the question:

How much additional wealth would Xi the retiree (who recall has no annuity income, but

$100 in liquid wealth) require to be as satisfied as the utility twin Yi who only converted

$1 into annuity income? The hypothetical twin doesn’t convert the entire $100 dollars in

annuities, only 1 dollar. We are focusing on the marginal impact. Our numbers are based

on the v that satisfies equation (32).

To be clear, we are now comparing the utility of someone (Yi) who has $99 of liquid

wealth plus (0.025+0.05)=0.075 dollars in lifetime income, to someone (Xi) who has $100 in

liquid wealth and absolutely no pension or annuity income. The actuarial present value of

the 0.075 dollars of annuity income is equal to 1 dollar, so the initial economic endowment

of both twins remains the same.

According to equation (32), Xi would now require or demand an additional $1.986 (for

a total wealth of $101.986) to obtain the same level of discounted lifetime utility, compared

to twin Yi with $99 of liquid wealth and $0.075 of annual annuity income. Notice that as a

percent of the one dollar used by Yi to purchased annuities, the $1.986 is much more than

the 125%, which we associated with annuity equivalent wealth in-the-large.

The reason for this apparent non-homogeneity, despite the assumed CRRA utility struc-

ture, is that (even) when a small sum is converted into annuity income, the discounted value

of lifetime utility, or the value function no longer scales in initial wealth. (It does scale in the

pension income, though.) This is because of the wealth depletion time which is an integral
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(albeit obscured) part of the optimal consumption strategy. The sixth row (Case A6) illus-

trates a consumer (still Xi) who is entitled to a pension of $5.625 for life, but who has liquid

wealth (savings) of $25 at retirement. Note that the multiple of pension income to investable

wealth is 4.4 to one, which is consistent with a typical (American) retiree who is entitled

to social security benefits of $32,000 per year and might have (an average of) $140,000 in

retirement savings. Within table #1, this retiree also has an initial $100 dollars, but 75% is

pre-allocated to pension annuities, only 25% is available for further annuitization; ψ = 0.75.

The extra utility from annuitizing the remaining $25 will be lower, and the last column in

table #1 indicates that the value of pooling for this situation is (only) 57.7%. This number

is less than half of the value of pooling when the individual has no pre-existing annuity

income (recall the 125%), but it still quite substantial. To put this number in a sentence,

the annuity equivalent wealth of $25 in investable wealth when you have $5.625 in pension

income is 25(1.577) = $39.425. This once again is what we term the value of longevity risk

pooling in-the-large.

The second to last column in the same row indicates that the parallel AEW in-the-small

is 0.743 dollars. This means that Xi with 25 dollars would require an additional 0.743 dollars

(or 25.743) to make them as well-off, in a utility sense, as Yi who has 24 dollars of investable

wealth and 5.625 + 0.075 = 5.7 dollars of annuity income. Either way, whether we focus on

the absolutely (large) or marginal (small) the value of longevity risk pooling is non-zero, but

getting lower and closer to the insurance loadings (and anti-selection costs) that one might

observe in practice. More on this in the conclusion.

Moving on to the optimal consumption strategy for this individual ($25 of investable

wealth and $5.625 of annuity income), the wealth depletion time (WDT) is 18.6 years. As

we explained in the earlier section, Xi will rationally exhaust wealth after 18.6 years of

retirement and (from that point onward) only consume the pension income of $5.625. The

initial consumption rate will be $8.437 per year, of which $5.625 is pre-existing pension

income and $2.812 comes from liquid investable wealth. Using terminology common among

financial advisors, this is a drawdown or retirement spending rate of 2.812/25 or 11%, and

fully rational given the (higher) pension income.

At the very bottom of the Case A section, notice that when 99% of the retiree’s initial

endowment is already pre-annuitized, both the AEW in-the-large and the AEW in-the-small

is equal to 11%. Their definitions now coincide. Giving-up one dollar (and buying more

annuities) leads to the same utility as annuitizing the entire one dollar.

Table #1 also offers numbers (under Case B) when the mortality rate λ and the coefficient

of relative risk aversion γ are reduced. For the second case, the CRRA value is set at γ = 1.5

and the mortality rate is set to λ = 3.125%, which is synonymous with a life expectancy

of 32 years (versus the 20 years in Case A.) We selected these precise numbers for Case B,

because we wanted to take advantage of the complete analytic representation for τ and δ,

that only work when λ/γ = r.

A lower or reduced value for the coefficient of relative risk aversion γ results in a lower

value of longevity risk pooling δ0, δπ or v. Note also that optimal consumption c∗t is reduced

or lower when γ is higher, due to the higher (risk adjusted) probability of living to an
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advanced age. As in Case A which was reported above, all of these numbers were obtained

using the analytic expressions in the prior section, although the value of v within equation

(32) was extracted using a simple root-finding algorithm.

Before we conclude this numerical section (under exponential lifetimes) and move on to

more realistic mortality tables and curves, it’s worth commenting on the non-monotonic level

of consumption as one goes down the rows in the two cases. The initial consumption rate

in the absence of any annuities is $5 per year for life, but then increases as the fraction of

pre-existing pension income is increased. Eventually it does reach a maximum when 70% to

75% of the initial endowment is pre-pensionized. It then begins to decline with additional

annuitization. This shouldn’t be viewed as troubling or inconsistent. A higher initial con-

sumption rate doesn’t necessarily lead to additional utility primarily because consumption is

forced to decline (more) rapidly over time. Stated differently and perhaps counter-intuitively,

maximizing discounted lifetime utility doesn’t necessarily maximize the initial consumption

or spending rate.

That said, within the context of behavioral economics it might be hard to convince Xi

who is rationally and optimally spending $8.974 per year (sixth row of Case A, for example)

that they should annuitize the $25 of liquid wealth (like Yi), so that their consumption rate

can immediately drop to $7.5 per year. Xi might not be persuaded that such an action is

equivalent (in utility terms) to having 57.7% more liquid wealth. This is quite different from

(2nd row, Case A) where the individual who is persuaded to annuitize his or her entire wealth

can immediately benefit from a jump in consumption from $6.171 per year to $7.5 dollars

per year, for life. Alas, perhaps it is not surprising that (in the real world) annuitization can

be a hard sell.

In the next section #4, we offer some analytic insights for the case in which remaining

lifetime is no longer exponentially distributed and the force of mortality increases over time

and/or is fit to a proper life table.

4 General Mortality Models

We do not want to get bogged down in the details of an appropriate model for current

and future mortality rates λt and instead refer the readers to the book by Pitacco, Denuit,

Haberman and Olivieri (2009) for appropriate analytic representations. In this section we

continue to use the notation ax to represent the general annuity factor under an interest

rate r, assuming the current age of the individual is x. The annuity factor can actually be

expressed analytically when the underlying mortality basis is assumed to obey a Gompertz-

Makeham law, and this is presented in the book by Charupat et al. (2012), page #289, for

example. Alternatively, under a discrete mortality table (with or without projection scales),

the expression ax is easily available and computed using any basic spreadsheet. Either way,

using the same methodology we described and followed in section #3, when π = 0, one

obtains the following analytic expression for the value of longevity risk pooling:
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Figure 1: Displayed δ0 values are function of initial annuitization age x, risk aversion γ and

interest rate. Blue (left figure) is for r = 5%, red (right figure) is for r = 1%, both with risk

aversion coefficients γ = 1 (lower) to γ = 5 (upper). Mortality is fit to 1930 SSA cohort.

δ0 =

(

ax
ax∗

)
γ

1−γ

− 1, (33)

where the (new) variable x∗ in the denominator of equation (33) represents a modified or

risk-adjusted age, similar to the reduction of the mortality rate λ/γ that appeared earlier

in equation (22). One can think of x∗ as an age set-back. In particular, if we assume

Gompertz mortality with parameters (m, b), the adjusted age x∗ = x − b ln γ, where γ is

the coefficient of relative risk aversion. For example, if γ = 2, the current age x = 65 and

the dispersion coefficient b = 11.5, (which is approximately the standard deviation of the

remaining lifetime), then the risk-adjusted age x∗ = 57.03. But if the risk aversion coefficient

is increased to γ = 3, then x∗ = 52.376.

Here is another way to express and think about this. The annuity factor in the numerator

of the fraction in equation (33) is computed using the retiree’s biological age, whereas the

denominator is computed at a risk-adjusted economic age.

4.1 In a Gompertz-Makeham mortality world

The general methodology for computing δ0, captured by equation (33) is applicable under

any mortality basis in which the implied force of mortality is non-decreasing and follows

from equation (16). The derivation or proof is relatively simple in the context of Gompertz-

Makeham (GM) mortality. In particular, the justification for the age-shift from x to x∗ in the

annuity factor, is as follows. Recall that the optimal consumption function c∗t can be written

in terms of either the initial consumption rate c∗0 or the terminal (pension) consumption rate

π, via the adjusted survival probability (tpx)
1/γ. This comes directly from equation (12) or

equation (11). Those analytic expressions for consumption are exponential in t, easily flow

through the integral calculations, which lead to the value of longevity risk pooling.

In the case of GM mortality the risk-adjusted survival probability can be expressed as:

(tpx)
1/γ = e−

1

γ

∫ t

0
λsds, (34)
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Table #2

Comparing Analytics to Numerics: Annuity Equivalent Wealth

CRRA Gompertz Mortality (analytic) Results in Brown et. al. (2001)

γ = 1.0 1 + δ0 = 1.499 1.502

γ = 2.0 1 + δ0 = 1.650 1.650

γ = 5.0 1 + δ0 = 1.872 1.855

γ = 10 1 + δ0 = 2.050 2.004

Gompertz (Unisex) Mortality with: m = 81, b = 11.5 and r = ρ = 2.5% discount rate.

Life Expectancy of 15.4 years at age 65, based on the 1930s SSA cohort.

where the GM mortality hazard rate can be written as:

λs = λ+
1

b
exp

(

x+ s−m

b

)

. (35)

If we divide both sides and scale by γ, the relevant integrand can be expressed as:

λs
γ

=
λ

γ
+

1

b
exp

(

x− b ln γ + s−m

b

)

=
λ

γ
+

1

b
exp

(

x+ s− (m+ b ln γ)

b

)

(36)

where λ is replaced with λ/γ and the initial age x is replaced with x∗ = x− b ln γ. Alterna-

tively, the initial age remains x and the modal parameter m is replaced with m∗ = m+b ln γ.

More generally, for those who want to compute the value of δ0 for any given discrete

mortality table, the trick is to adjust the underlying mortality rate by the coefficient of rel-

ative risk aversion γ, which would (roughly) approximate the process of computing λ/γ. If

more precision is desired, then it would probably be best to locate the best fitting biomet-

ric (λ,m, b) values and then use the analytic Gompertz-Makeham annuity factor with the

adjusted modal value: m+ b ln γ and with λ/γ. See technical appendix for an algorithm.

4.2 Results: Continuous Gompertz vs. Discrete Brown

Table #2 compares results for the annuity equivalent wealth computed in the paper by

Brown et al. (2001), vs. the value as per equation (33) and a Gompertz specification with

m = 81 and b = 11.5. The two coefficients were selected to (best) fit the discrete mortality

table used in Brown et al (2001). The interest and valuation rate was assumed to be 2.5%,

in real terms. We report value of 1 + δ0 under a variety of γ values.

The numbers in the first column of this table roughly match the values computed by

Brown, Mitchell, Poterba and Warshawsky (2001), pg. 143, using mortality data from the

Social Security Administration (SSA) for the 1930s cohort. For example, if the individual

is extremely (γ = 10) risk averse, he/she would require 2.05 to achieve the same (maximal)

level of utility as someone who spends $1.00 and uses the funds to acquire annuity income

1/a65. The numbers reported in Brown et al. (2001) are $2.004 per initial $1.
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Finally, figure #1 provides a full spectrum of results for different retirement (pooling)

ages (55 to 85), interest rates (r = 1% and r = 5%), and levels of risk aversion (γ = 1 to

γ = 5.) Notice how the sensitivity to risk aversion γ increases with retirement age.

4.3 Discrete Mortality: Gender Specific

Here is another example using a different set of mortality tables and rates. Under the

Individual Annuity Mortality (IAM) 1983 (basic) table, which was also used in the literature

for many of the original AEW estimates, and an r = 3% interest rate, the annuity factor

at age x = 65 is a65 = 13.64645 for males and a65 = 15.58935 for females. Assuming a

γ = 2 coefficient of risk aversion in a CRRA utility function and a subjective discount rate

ρ equal to the interest rate r, the modified annuity factor is a65∗ = 16.81724 for males and

a65∗ = 18.39907 for females. For this we have kept it simple and divided the mortality

rates in the IAM1983 table by γ = 2 and priced the appropriate (modified) annuity at age

x = 65 using the scaled mortality. The value of annuity equivalent wealth (AEW) which

is δ, is equal to: δ0 =
(

13.64645
16.81724

)

−2 − 1 = 0.5187, or 51.87% for a male at age 65, and

the equivalent value is δ = 0.3930 or 39.30% for a female at age 65. The AEW is lower

for females because their mortality rate is lower at all ages, making the annuity (pooling)

relatively more expensive, etc.

Up until now we have focused on values of γ ≥ 1, but even when γ < 1 there is still

value to longevity risk pooling (although it will obviously be lower), provided that γ > 0.

So, if we reduce the (longevity) risk aversion parameter from 2 (in the prior paragraph) to

γ = 0.50, the corresponding (objective) annuity factors a65 do not change. But, the modified

or adjusted factors are now (increased) to a65∗ = 10.53740 for males and a65∗ = 12.72198 for

females. The corresponding values of δ are (only) 29.5% for males and 22.54% for females,

according to equation (33). Stated differently, the value of pooling is reduced when you don’t

dislike longevity risk as much.

For the third and final numerical example, we leave the coefficient of (longevity) risk

aversion at γ = 0.5, but reduce the valuation (or pricing) interest rate from 3% to r = 1.5%,

which increases a65 as well as a65∗ . The value of longevity risk pooling is now (slightly higher

than the prior numerical example) at 33.93% for males and 26.39% for females.

Note that the results are not as sensitive to interest rates. The δ benefits really are driven

by risk aversion γ and by the assumed mortality rates. Additional numerical examples are

reported in a technical appendix, with an algorithm that can also be used when ψ > 0.

5 Conclusion

Against the backdrop of declining defined benefit (DB) pension coverage and increasing

reliance on defined contribution (DC) investment plans, there is a growing awareness that

longevity risk pooling is being lost in transition. Practicing actuaries, as well as insurance

and pension economists are generally aware of the benefits of longevity risk pooling, but the
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general public, the media and often regulators do not appreciate the social welfare benefits

of annuitization.

In this paper we take a step in the direction of helping explain and quantify the benefits

of pooling to practising actuaries and a wider public by deriving some closed-form and

easily digestible expressions for the utility-based value of longevity pooling. This utility

value is simply the percentage increase in what economists label annuity equivalent wealth

(AEW). The algorithmic process for computing AEW value has been used by economists

in the literature, going back to the work by Kotlikoff and Spivak (1981), Brown et al.

(2001), or the reference on annuity markets by Cannon and Tonks (2008). What is less

known – and we believe one of the contributions of this paper – is that by assuming some

analytic representations for the remaining lifetime random variable, one can obtain closed-

form expressions for the value of longevity pooling. These formulae are simply unavailable or

highly obscured when the mortality basis is a discrete mortality table and the optimization

is done via backward induction or numerical dynamic programming.

Under logarithmic utility preferences and the assumption that remaining lifetime is ex-

ponentially distributed with a mean value of: 1/λ (for example 20 years) and assuming the

risk-free interest rate is coincidentally equal to the instantaneous mortality rate (for exam-

ple 2.5%), then the value of longevity risk pooling is:
√
e− 1, which is approximately 65%.

Note that in Brown et al. (2001), using a dynamic programing algorithm and a variety of

mortality tables and interest rate assumptions, the reported result for the AER was 1.5, or

a 50% value from pooling. To be clear, our δ0 =
√
e−1 result only holds when the inverse of

life expectancy (λ) is equal to the risk-free rate (r). And, while this result might be trivial or

impractical or both, the fact is that it provides bounds on the value of longevity risk pooling.

More generally when the life expectancy is not equal to the interest rate, the value of

longevity pooling can be expressed in an equally simplified manner as a power function of

the ratio of two annuity factors. Under any combination of interest rates r and mortality

rates λ, the value of longevity risk pooling is:

δ0 =

(

r + λ/γ

r + γ

)
γ

1−γ

− 1 :=

(

aλ
aλ/γ

)
γ

1−γ

− 1.

The first annuity factor in the numerator is the actual one based on biological age and

mortality rate: aλ = (r + λ)−1, and the second annuity factor in the denominator assumes

an age set-back that depends on the degree of risk aversion, aλ/γ = (r + λ/γ)−1.

For example, in the case of exponential mortality a γ = 2 would imply a doubling of life

expectancy from 1/λ to 2/λ, etc. So, the value of longevity risk pooling at the age of 65 is

equal to the actuarial annuity factor for a 65-year-old divided by the actuarial annuity factor

for a 45-year-old (all to the power of 2). The retiree is 65, but the pricing is done as if they

are 45, etc.

In fact, this simplified representation of the value of longevity risk pooling δ0 extends to all

continuous (biologically reasonable) mortality assumptions, which would include Gompertz-

Makeham which can be fit to any (retirement) mortality table. To that end we presented

expressions which can be used in many circumstances and offer some economic and actuarial
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intuition.

Besides novel expressions, in terms of lifecycle modeling we have shown that in the

presence of pre-existing pension annuities, not only is the value of longevity pooling lower,

but the methodology used must be carefully adjusted for the rational wealth depletion time

(WDT). It is no longer possible to express the value of pooling as a function of a simple ratio

of annuity factors and in fact the discounted value function no longer scales in initial wealth.

At the very least one must scale by pension income. And, while we are still able to obtain

some analytic results under exponential mortality – and reported those in table #1 – we are

forced to parse the definition of pooling value to differentiate between annuitizing one more

dollar vs. the entire initial wealth. In contrast to what someone might expect, the value

of pooling one more dollar (v using our notation) is worth more than the value of pooling

the entire wealth (δ, using our notation), even in the presence of pre-existing annuities. We

referred to this as the annuity equivalent wealth in-the-large vs. in-the-small.

5.1 Final Words

We conclude with a note reminding readers that all of these results and expressions were

derived assuming the biological annuity factors ax applicable for valuing pre-existing pen-

sion annuity income are identical to the cost of buying additional annuity income. Early we

mentioned that the price of $1 of annuity income is (1+κ)ax, but assumed k = 0. We placed

ourselves in a utopia with no adverse selection costs and no transaction costs. Mandated

groups (e.g. Social Security) pay the same price for their pension annuities as retail indi-

viduals would pay in the open market. This is not the case in practice and κ > 0. See, for

example, estimates provided by Finkelstein and Poterba (2004), for the magnitude of these

costs in the U.K. It’s evident from the numerical results that if one already has ψ = 75% of

retirement wealth pre-annuitized, and one has to pay a loading of 30% to acquire additional

annuity income, possibly due to stochastic mortality, the value of pooling can be negative.

The rational consumer would be better off spending-down assets and living-off pension an-

nuity income at the wealth depletion time. We leave these frictions as an avenue for future

research. At what value of κ > 0 does δψ become negative and annuitization reduces utility?

Our research has also omitted any discussion of more general Epstein-Zin preferences, in

which obtaining closed-form expressions is quite hopeless. Although, according to estimates

reported in Cannon and Tonks (2008), the annuity equivalent wealth values would be even

higher than our numbers. On the other hand recent and highly visible work by Rechling and

Smetters (2015) indicates that in the presence of stochastic mortality the value of pooling

is lower, although this has been questioned in recent work by others, see for example Bauer

(2017). On a separate path, Feigenbaum et al. (2013) use an overlapping generation model

to argue that full annuitization is not welfare maximizing even with a deterministic mortality

rate. In other words, the annuity debate (in academia) continues.

In sum, we believe that building a strong case or consensus for annuitization in the future

will crucially depend on a strategy of being able to explain the value to individual retirees who

are limited by behavioral and cognitive obstacles. This is in contrast to a research strategy
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of extending the economic lifecycle model to include more general behavioral preferences,

longevity insurance products and asset dynamics. In some sense this group is preaching to

the (very small) choir of economists within the existing literature. We hope that some of

the simple, analytic and digestible expressions we presented in this paper might be lead to

contributions beyond the academic literature. At the very least
√
ǫ now has an actuarial

economic interpretation.
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Appendix & Algorithm: Utility Value of Longevity Risk Pooling

Our objective in this technical appendix is to provide some self-contained R-scripts that can

be used to compute (numerically) the annuity equivalent wealth ŵ, or what we call the value

of longevity risk pooling δ := ŵ/w−1, when the retiree is endowed with investable wealth w

and pre-existing annuity income flow π. Recall that the closed-form analytic equation (33) in

Milevsky & Huang (2018) only “works” when π = 0. When π > 0 the value of longevity risk

pooling δ is lower than equation (33) and the solution structure itself is more complicated.

Instead of the relevant δ being equal to the ratio of two annuity factors to the power of risk

aversion, we must (i.) compute the wealth depletion time τ at the same time we (ii.) equate

utilities. We now describe that process or algorithm, one which also reproduces equation

(30) when π = 0.

5.2 Wealth Depletion Time

We start by defining the basic annuity valuation factor (or function in R), using the current

age x, the valuation rate r, and the Gompertz parameters (m, b) as arguments.

ILA<-function(x,r,m,b){

omega<-x+b*log(1+10*log(10)*exp((m-x)/b));

dt<-1/52; grid<-(omega-x)/dt; t<-(1:grid)*dt

pgrid<-exp(exp((x-m)/b)*(1-exp(t/b)))

rgrid<-exp(-r*t)

sum(pgrid*rgrid)*dt}

This immediate life annuity factor is a discretized (Reimann) version of an actuarial expec-

tation, which we will occasionally abbreviate as:

ILA(x) :=

∫ ω−x

0

exp{−rt+ e(x−m)/b(1− et/b)} dt, (37)

since (r,m, b) are usually fixed. In the R-script, the grid size: dt = 1/52 (weekly) is arbitrary,

as is the upper bound: ω − x = b ln{1 + 10 ln(10)e(m−x)/b}. At first glance, this cut-off

point might seem arbitrary, but under a Gompertz law of mortality the conditional survival

probability from age x to age ω is exactly: (ω−xpx) = 10−10, under this value of ω. For

example, when m = 90, b = 10 and x = 65, the integral’s upper bound is 56.401 This

represents a one-in-ten billion chance of a new retiree living to age 121.4; roughly consistent

with the death of Jeanne Calment at age 122, so far the world’s oldest living person. Note

that our R-script construction of ILA(x) is general enough to accommodate any (not only

Gompertz) survival curve via the argument pgrid and any (not only constant r) valuation

curve via rgrid, so long as they can both be expressed in consistent weekly increments.

Using the same approach, we construct a temporary life annuity factor with the following

modified R-script.
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TLA<-function(x,T,r,m,b){

dt<-1/52; grid<-T/dt; t<-(1:grid)*dt

pgrid<-exp(exp((x-m)/b)*(1-exp(t/b)))

rgrid<-exp(-r*t)

sum(pgrid*rgrid)*dt}

Lifetime payments cease at the earlier of death and T ≤ ω− x. The only difference between

the original ILA and TLA is the time horizon T which determines the upper bound of inte-

gration instead of ω − x. Computationally both factors are identical when T = ω − x, and

the formal actuarial definition, is:

TLA(x, T) =

∫ T

0

exp{−rt+ e(x−m)/b(1− et/b)} dt. (38)

We should note that under a Gompertz-Makeham law of mortality there are in fact closed

form analytic expressions available for TLA(x,T) in terms of the well-known Gamma function.

See Charupat et. al (2012, pg. 289) for example. Moreover, using a Gamma representation

may be faster (in R) compared to the crude discretization scheme described above. We have

decided to adopt the numerical (grid) approach for ease of explanation, replicability and

because the Gamma function can get “finicky” under certain parameter values.

To complete the trivariate, using basic cash-flow geometry we construct the deferred life

annuity factor by subtracting a TLA from the ILA in the following intuitive way.

DLA<-function(x,T,r,m,b){ILA(x,r,m,b)-TLA(x,T,r,m,b)}

This function could also have been constructed by subtracting two temporary annuity factors

TLA(x,T) from TLA(x,ω-x), both of which follow directly from the actuarial expectation:

DLA(x, T) =

∫ ω−x

T

exp{−rt+ e(x−m)/b(1− et/b)} dt, (39)

As far as modifying the R-script for the DLA is concerned, reducing the grid size, changing ω,

replacing the embedded mortality curve pgrid and/or discounting curve rgrid must be done

directly via the functions ILA(x) and TLA(x,T). For the sake of calibration or replication

we offer the following three numerical values of the relevant functions.

> ILA(65,0.025,81,11.5)

[1] 12.21481

> TLA(65,15,0.025,81,11.5)

[1] 9.96662

> DLA(65,15,0.025,81,11.5)

[1] 2.248191
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These numbers reflect an r = 2.5% (real) valuation rate and Gompertz parameters m =

81, b = 11.5, as per table #2 in Milevsky & Huang (2018), which itself was calibrated to

the 1930 Social Security Administration (SSA) cohort. Moreover, using the classic actuarial

identity that the immediate annuity factor collapses to mathematical life expectancy E[Tx],

when the interest rate is zero, recovers the (cohort) life expectancy for the 1930 SSA life

table.

> ILA(65,0,81,11.5)

[1] 15.44889

We are ready to compute the wealth depletion time τ . As shown in Charupat et al. (2012,

pg. 301), while the optimal consumption function c∗t = π, for time t ∈ [τ,∞), which is after

the wealth depletion time, during the period t ∈ [0, τ), c∗t = c∗0(tpx)
1/γ. This can also be

expressed as:

c∗t =

[

(w + π/r)erτ − π/r

TLA(x−b ln γ, τ) erτ
]

(tpx)
1/γ, ∀ t ≤ τ, (40)

where TLA(x−b ln γ, τ) is a temporary life annuity factor, terminating at the earlier of death

and τ years, but assuming the current (Biological) age is set-back to: x − b ln γ. Equation

(40) implies that the wealth depletion time τ must satisfy:

[

(w + π/r)erτ − π/r

TLA(x−b ln γ, τ) erτ
]

(τpx)
1/γ − π = 0, (41)

because consumption c∗t converges to π as t → ω − x. Note that τ appears in no less than

four places within equation (41). This makes it almost impossible to solve for an analytic

expression or solution in τ , unless π = 0, in which case τ → ∞. Numerically though, it’s

quite trivial to isolate τ , especially in R.

Before we take that step, let’s redefine ψ0 = πILA(x)/(w + πILA(x)) as the fraction of

total (balance sheet) wealth that is initially pensionized. This ratio does not depend on τ or

γ but is an implicit function of (r,m, b). Dividing equation (41) by π and then substituting

w = ILA(x)π 1−ψ0

ψ0

, leaves us with:





(

ILA(x)1−ψ0

ψ0

+ 1
r

)

erτ − 1
r

TLA(x− b ln γ, τ) erτ



 (τpx)
1/γ − 1 = 0. (42)

We have scaled the problem and eliminated a variable by focusing on ψ0 instead of the duo

(w, π), as it relates to computing the wealth depletion time. After much preparation, we are

ready for our first computational step which is to locate the (numerical) value of τ that solves

the above equation (42). This can be done in R using the built in uniroot function, because

the left-hand side of equation (42) is monotonically decreasing in τ and only hits zero once,

at least for realistic values of x, r,m, b, γ, ψ0. In particular, we construct the function f(t)

via the following script:
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f<-function(t){(((ILA(x,r,m,b)*(1-psi)/psi+1/r)*exp(r*t)-1/r)

*exp(exp((x-m)/b)*(1-exp(t/b)))^(1/gam))/

(TLA(x-b*log(gam),t,r,m,b)*exp(r*t))

-1}

This codes-up the left hand side of equation (42) and we are now ready to compute numerical

results. We take an x = 65 year-old retiree, with a real pension entitlement of π = $25, 000

per year, under an r = 2.5% valuation rate, and Gompertz parameters m = 81 and b = 11.5.

The full immediate life annuity factor ILA(x,r,m,b), as well as the initial fraction of wealth

that is pensionized ψ0, and present value of the entire balance sheet, are computed by the

following R-script.

> x<-65; r<-0.025; b<-11.5; m<-81;

> w<-100000; pi<-25000;

> psi<-ILA(x,r,m,b)*pi/(w+ILA(x,r,m,b)*pi)

> ILA(x,r,m,b); psi; w+ILA(x,r,m,b)*pi

[1] 12.21481

[1] 0.753312

[1] 405370.3

Although the initial liquid wealth is w = $100, 000, once the pre-existing pension income

is added and valued at a factor multiple of ILA(65) = 12.214, the economic value of the

consumer’s balance sheet is $405, 370, of which ψ0 = 75.3% is pensionized.

Finally, when γ = 4 for example, the command uniroot in R, with the lower bound of

t = 0 (which is the earliest possible wealth depletion time) and upper bound of t = ω − x,

leads to:

> gam<-4; uniroot(f,lower=0,upper=omega-x)$root

[1] 20.82686

This is a wealth depletion time of 20.8 years. Conceptually, R starts searching at the last

possible wealth depletion time, the biological end of the mortality table, and computes f(t)

at that extreme end-point. Given that π > 0 and ψ0 > 0, f(t) < 0 at t = ω − x. The

algorithm then slowly reduces t until f(t) = 0. Thinking back to equation (40), t is the

time at which the consumption rate is exactly equal to the pension income, which is a type

of smooth pasting condition on consumption. We use the phrase conceptually instead of

computationally because uniroot does something slightly more sophisticated, but the end

result is the same. For calibration and testing purposes, here are some additional values of

τ for lower levels of risk aversion γ, which results in earlier wealth depletion times.

> gam<-3; uniroot(f,lower=0,upper=omega-x)$root

[1] 18.92299

> gam<-2; uniroot(f,lower=0,upper=omega-x)$root
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[1] 16.40704

> gam<-1; uniroot(f,lower=0,upper=omega-x)$root

[1] 12.63457

These numbers are in years. A 65 year-old retiree from the 1930 SSA cohort, with a coefficient

of relative risk aversion (CRRA) of γ = 1, a.k.a. logarithmic utility, should rationally deplete

wealth by the age of x+ τ = 65 + 12.63 = 77.63 and from then on, assuming they were still

alive, live-off their Social Security benefits; for the earlier w, π and ψ values.

As far as interest (valuation) rates are concerned, its impact on the wealth depletion

time is muted. Here is an example with (a lower) value of r = 1%. The original parameters

x = 65, m = 81 and b = 11.5 are retained for comparison, as is the value of γ = 4. The only

argument or variable that must be modified in our code is r, which affects the f(t) function

directly via equation (42), as well as indirectly via ψ0. As before, we report the annuity

factor ILA(65), as well as ψ0.

> x<-65; r<-0.01; b<-11.5; m<-81; gam<-4;

> w<-100000; pi<-25000;

> psi<-ILA(x,r,m,b)*pi/(w+ILA(x,r,m,b)*pi)

> ILA(x,r,m,b); psi; w+ILA(x,r,m,b)*pi

[1] 14.01202

[1] 0.7779261

[1] 450300.5

> uniroot(f,lower=0,upper=omega-x)$root

[1] 20.19228

The present value of the entire balance is sheet is now $450, 300 (versus the $405, 000), and

the fraction of wealth that is initially pensionized increases to ψ0 = 77.8%. The wealth

depletion time only changes slightly, from 20.8 years to 20.19 years, which is a reduction of

slightly more than six months. Stated differently, the age which you should “target” to run

out of money – when you have a good pension – isn’t very sensitive to interest rates; it’s age

85 for the above pension income π = $25, 000 and risk aversion γ = 4, level.

Before we move on to solving for δ and the value of longevity pooling, we take the

opportunity to store numerical values for the wealth depletion time over an entire range:

0 < ψ < 1, so that they can be easily recalled and used later. In particular, we discretize ψ

into units of 0.001 and compute the corresponding values of τ using the following R-script.

gam<-1; wdtg1<-c();

for (i in 1:995){psi<-i/1000

wdtg1[i]<-uniroot(f,lower=0,upper=omega-x)$root}

We stop the loop at 995 for reasons of numerical stability, since we know the value converges

to zero when ψ0 = 1. For example, irrespective of the actual values of (w, π), the wealth
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Figure 2: Appendix Figure A1

depletion time for ψ0 = 0.2, ψ0 = 0.5 and ψ0 = 0.8 are obtained from the 200th, 500th, and

800th element of the wdtg1 vector. They are:

> wdtg1[200]; wdtg1[500]; wdtg1[800]

[1] 23.85256

[1] 17.59238

[1] 11.53844

We can do the same for a coefficient of relative risk aversion γ = 8, and denote the corre-

sponding vector by wdtg8 instead of the wdtg1

> gam<-8; wdtg8<-c();

> for (i in 1:995){psi<-i/1000

+ wdtg8[i]<-uniroot(f,lower=0,upper=65)$root}

> wdtg8[200]; wdtg8[500]; wdtg8[800]

[1] 42.64514

[1] 33.58799

[1] 23.99997

For higher levels of risk aversion, the wealth depletion time is rationally and cautiously later.

We forced the R-script upper bound (in uniroot) to a higher value of t = 65 because the

wealth depletion age at high levels of risk aversion and low levels of ψ0 is close to ω.

To get a visual sense of wealth depletion ages, Figure #A1 (left) plots the two vectors

over ψ ∈ [0, 1]. The upper curve is wdtg8, and the lower curve is wdtg1. We conclude this

subsection by reminding readers (and users) that implicit in this figure (and our calculations)

is the assumption that personal subjective discount rates ρ are unaffected by γ and are in fact

set equal to the objective valuation rate ρ = r. Otherwise, equation (42) must be modified

as per Charupat et. al (2012, pg. 300).
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5.3 Equating Utilities

With the wealth depletion time readily available, we can now “think” of τ as being a function

of the mortality parameters (x,m, b), the economic parameters (r, γ) and the pensionized

fraction ψ. In fact, we will occasionally write and express τ as an explicit function τ(ψ),

when we have to draw attention to it’s dependence on ψ. Back to first principles, assuming

an instantaneous CRRA utility function written as: u(c) = (c1−γ − 1)/(1 − γ), complete

annuitization of the original endowment w in the pair (w, π) results in discounted lifetime

utility:

RHS = u

(

w

(1 + κ)ILA(x)
+ π

)

=
ILA(x)

1− γ

(

w

(1 + κ)ILA(x)
+ π

)1−γ

− ILA(x)

1− γ
, (43)

For completeness we include an insurance loading parameter κ ≥ 0. Note that when con-

verting wealth w into additional (retail) annuities, a commision or adverse selection cost

of 1 − (1 + κ)−1 of the amount annuitized might be charged, which for most of Milevsky

& Huang (2018) was zero. In practice, additional annuity income will cost more than the

(Social Security or group pension) annuity valuation factor ILA(x), per $1 unit of income.

The RHS in equation (43) denotes the right hand side of a utility equalization process and

many of the cumbersome coefficients and parameters will soon cancel.

Moving on to the left hand side of the utility equalization process in which an artificial

ŵ > w is invested at r and run-down or spent until the wealth depletion time τ , we have:

LHS =

∫ τ

0

e−rt (tpx) u(c
∗∗

t )dt + u(π)

∫ ω−x

τ

e−rt (tpx) dt. (44)

Maximal utility from (ŵ, π) is obtained by consuming c∗∗t > π until time t = τ and then

living off the pension π, once t ≥ τ .

We now recognize he second integral in equation (44) as the delayed life annuity factor, or

the function DLA(x, τ) in R. The annuity equivalent wealth ŵ > w doesn’t appear explicitly

in equation (44), but it’s implicit in both τ , as well as c∗∗t 6= c∗t .

For ease of computation, we break-up equation (44) into LHS1 and LHS2, which after

substituting the utility function u(c), leads to:

LHS1 =

∫ τ

0

e−rt (tpx)

[

(c∗∗t )1−γ − 1

1− γ

]

dt =

∫ τ

0
e−rt (tpx) (c

∗∗

t )1−γdt

1− γ
− TLA(x, τ)

1− γ
, (45)

LHS2 =
(π1−γ − 1) DLA(x, τ)

1− γ
=
π1−γ DLA(x, τ)

1− γ
− DLA(x, τ)

1− γ
. (46)

And, since ILA = DLA + TLA, when the underlying parameters r,m, b are the same, the last

items in equations (43), (45) and (46) cancel. Moreover, assuming γ 6= 1 (which we will

return to), and after multiplying by (1 − γ) the fundamental utility equalization process

leads to:

∫ τ

0

e−rt (tpx) (c
∗∗

t )1−γdt + π1−γ DLA(x, τ) = ILA(x)

(

w

(1 + κ)ILA(x)
+ π

)1−γ

. (47)
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Once again we refer to these three items sequentially as LHS1, LHS2, RHS, and tackle

each of them individually. First, we focus on LHS1 and recall that the optimal consumption

function c∗∗t = c∗∗0 (tpx)
1/γ, as per Charupat et al. (2012, pg. 301) and can be written as:

c∗∗t =

[

(ŵ + π/r)erτ − π/r

TLA(x−b ln γ, τ) erτ
]

(tpx)
1/γ, (48)

where TLA in the denominator is an age-modified temporary life annuity factor with current

age: x− b ln γ, delayed for τ years. The other three variables are the usual (r,m, b), and not

listed explicitly.

The item in square brackets of equation (48) is the optimal initial consumption rate c∗∗0
assuming an initial wealth of ŵ, not the original w. We pause here to emphasize (again)

the difference between c∗∗t versus c∗t , which is critical. The former double-star is the optimal

consumption strategy after we have replaced w with its annuity equivalent wealth ŵ. The

latter single-star is the optimal consumption strategy given the initial wealth w. Note that

both strategies also have different wealth depletion times, because they differ in the fraction

of wealth that is pensionized: ψ. In particular, the relevant ratio is now, ψ̂ = ILA(x)π/(ŵ+

ILA(x)π) ≤ ψ0 and the wealth depletion time: τ(ψ̂) ≥ τ(ψ0). See figure #1 (left panel) for

an intuitive picture and reason.

Substituting c∗∗t into what we called (the new) LHS1 leads to:

LHS1 =

[

(ŵ + π/r)erτ − π/r

TLA(x−b ln γ, τ) erτ
]1−γ ∫ τ

0

e−rt (tpx)
1/γdt, (49)

which, after recognizing that the integral portion is (also) the definition of the modified

temporary annuity factor, leads to a simpler:

LHS1 =
[

ŵerτ +
π

r
(erτ − 1)

]1−γ

TLAγ(x−b ln γ, τ) e(γ−1)rτ . (50)

Going back to our original definition of ψ0, since ŵ := (1 + δ)w, and π = w ψ0

(1−ψ0)ILA(x)
, we

can re-write the above LHS1 as:

LHS1 = w1−γ

[

(1 + δ) +
ψ0(e

rτ − 1)

rerτ (1− ψ0)ILA(x)

]1−γ

TLAγ(x−b ln γ, τ). (51)

We emphasize (yet again) the wealth depletion time τ(ψ̂) is for the “new” value of initial

wealth ŵ, that is the “new” value of the pensionization fraction: ψδ = ψ0/(δ(1 − ψ0) + 1).

Reducing ψ will increase the value of τ . Along the same lines, replacing π with w ψ0

(1−ψ0)ILA(x)

the LHS2 can be written as:

LHS2 = w1−γ

(

ψ0

ILA(x)(1− ψ0)

)1−γ

DLA(x, τ) (52)

where the DLA(x, τ) is valued at the current age x, under the parameters r,m, b. After

replacing π, the RHS in the utility equalization process is:

RHS = w1−γ ILA(x)

(

1

(1 + κ)ILA(x)
+

ψ0

(1− ψ0)ILA(x)

)1−γ

. (53)
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Dividing both sides of the utility equalization relationship, that is LHS1 + LHS2 as well as

RHS, by w1−γ leads to the following relationship for δ:

[(1 + δ) + α1]
1−γ = α2 − α3. (54)

where the three new α functions are defined as:

α1 =
ψ0(e

rτ − 1)

rerτ (1− ψ0)ILA(x)
, (55)

α2 =

(

1
ILA(x)(1+κ)

+ ψ0

(1−ψ0)ILA(x)

)1−γ

ILA(x)

TLAγ(x−b ln γ, τ) , α3 =

(

ψ0

ILA(x)(1−ψ0)

)1−γ

DLA(x, τ)

TLAγ(x−b ln γ, τ) . (56)

All three α terms depend on the wealth depletion time τ , which itself depends on δ thru

ψ̂, so the solution process is obviously iterative. Taking the final step; since ILA >= ILA in

equation (54) it’s clear that α2 ≥ α3, regardless of the value of κ in α2. So, we take roots

1/(1− γ) of equation (54), and the value of longevity risk pooling collapses to:

δ = [α2 − α3]
1/(1−γ) − α1 − 1 (57)

Compare this with the expression derived in Milevsky & Huang (2018). When π = 0, so

that ψ0 = 0, and the loading κ = 0, we have α1 = α3 = 0, and equation (57) collapses to:

δ =







ILA(x)
(

1
ILA(x)

)1−γ

TLAγ(x−b ln γ, τ)







1/(1−γ)

− 1 =

(

ILA(x)

ILA(x− b ln γ)

)
γ

1−γ

− 1, (58)

which recovers the correct value equation. Q.E.D.

In R, we use an iterative procedure for locating δ that satisfies equation (54), and not

(57), mostly for reasons of numerical stability. Basically, we (1.) start a loop with a value

of δ = i/1000, (2.) compute the reduced ratio ψ̂i, and (3.) identify the new (higher)

wealth depletion time τ(ψ̂i), and finally (4.) plug these values into the alphas and then

equation (54) to check for equality. If both sides are equal to each other, or more precisely:

((1 + δ) + α1)
1−γ − α2 + α3 ≤ 0 (when γ > 1 and vice versa when γ < 1), we stop the

search and report δ as the value of longevity risk pooling for a given ψ0. If the condition is

not met and utility is therefore not equalized for that δ, we increase the value of i (larger

annuity equivalent wealth), create a new (lower) ψi and begin the process anew. Eventually

the value of δ will be large enough so that utility is indeed equalized and we have converged

to the value of longevity risk pooling in the presence of pre-existing annuity income.

x<-65; r<-0.025; b<-11.5; m<-81; gam<-5;

k<-0; w<-100000; pi<-8200;

psi0<-ILA(x,r,m,b)*pi/(w+ILA(x,r,m,b)*pi)

delta.0<-(ILA(x,r,m,b)/ILA(x-b*log(gam),r,m,b))^(gam/(1-gam))-1

S<-ceiling(delta.0*1000)
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#The Algorithm will search from Delta = 0, upward.

for (i in 0:S){

delta<-i/1000; psi<-psi0/(delta*(1-psi0)+1)

f<-function(t){(((ILA(x,r,m,b)*(1-psi)/psi+1/r)*exp(r*t)-1/r)

*exp(exp((x-m)/b)*(1-exp(t/b)))^(1/gam))/

(exp(r*t)*TLA(x-b*log(gam),t,r,m,b))-1}

#Compute the Wealth Depletion Time (WDT)

tau<-uniroot(f,lower=0,upper=omega-x)$root

#Compute the three Alpha Values

alpha1<-(psi0*(exp(r*tau)-1))/(r*exp(r*tau)*(1-psi0)*ILA(x,r,m,b))

alpha2<-(ILA(x,r,m,b)*(1/(ILA(x,r,m,b)*(1+k))+psi0/((1-psi0)

*ILA(x,r,m,b)))^(1-gam))/TLA(x-b*log(gam),tau,r,m,b)^(gam)

alpha3<-(DLA(x,tau,r,m,b)*(psi0/((1-psi0)*ILA(x,r,m,b)))^(1-gam))/

TLA(x-b*log(gam),tau,r,m,b)^(gam)

#Test for Utility Equalization.

if (((1+delta)+alpha1)^(1-gam)-alpha2+alpha3<=0){

print("Analytic Delta Zero"); print(delta.0);

print("Pensionized (Psi)"); print(psi0);

print("Delta for given Psi:"); print(delta);

break}}

The algorithm initializes values of x, r,m, b, γ, w, π, as well as the loading factor k. The

R-script computes ψ0, which is the initial fraction pensionized, as well as the value of δ0,

which is the value of longevity risk pooling if π = ψ = 0. It’s the upper bound on the value

of ψ̂δ and becomes the maximal value for loop iteration. The algorithm gradually increases δ

and by correspondingly reduces ψ̂δ = ψ0/(δ(1−ψ0) + 1) and computes the wealth depletion

time τ(ψ̂δ) for that value of δ. It then computes the three α values and tests for the utility

equalization condition. If they are indeed equal, or more precisely equation (54) is less than

or equal to zero (since we assume γ > 1), the algorithm stops and the most recent δ is our

candidate.

We conclude with a few runs of the R-script. The parameters were selected to match

Table 5.10 in Brown et al. (2001). Although they use “old” mortality, our choice is meant

as a check on methodology. In practice, we would calibrate (m, b) to recent tables.

[1] "Analytic Delta Zero"

[1] 0.8730134

[1] "Pensionized (Psi)"

[1] 0.5004033

[1] "Delta for given Psi:"

[1] 0.634

We focus on γ = 5. The value of longevity risk pooling for an individual with no pre-existing

annuity, ψ0 = 0 using our notation, is δ0 = 87.3%, compared with 85.5% in Brown et al.
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Figure 3: Appendix Figure A2

More importantly, when the initial real pension income is set to π = $8, 200, which is a

pensionization fraction of ψ0 = 0.5, the value of pooling is δ0.5 = 63.4%, and compares quite

favorably with their 62.3%, a case they called half of initial wealth in pre-existing annuity.

Here are results of another run in R, under a value of γ = 1.01, to get close to logarithmic

utility.

[1] "Analytic Delta Zero"

[1] 0.5010502

[1] "Pensionized (Psi)"

[1] 0.5004033

[1] "Delta for given Psi:"

[1] 0.326

The values in Brown et al. are 50.2% for no preexisting annuity income and 33.0% for

ψ0 = 0.5. We obtain similar results for γ = 2 and γ = 10; the two other values they

reported. On a separate note, using our algorithm with m = −b lnλb and b → ∞, which

implies Gompertz converges to exponential, we comfortably reproduce the numbers in table

#1 of Milevsky & Huang (2018). Finally, when κ > 0% insurance loading, the value of

pooling δ is much lower and is illustrated in figure #A2 with γ = 4 and κ = 30%.
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